Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474680

RESUMO

Many important biological species have been identified as cancer biomarkers and are gradually becoming reliable targets for early diagnosis and late therapeutic evaluation of cancer. However, accurate quantitative detection of cancer biomarkers remains challenging due to the complexity of biological systems and the diversity of cancer development. Fluorescent probes have been extensively utilized for identifying biological substances due to their notable benefits of being non-invasive, quickly responsive, highly sensitive and selective, allowing real-time visualization, and easily modifiable. This review critiques fluorescent probes used for detecting and imaging cancer biomarkers over the last five years. Focuses are made on the design strategies of small-molecule and nano-sized fluorescent probes, the construction methods of fluorescence sensing and imaging platforms, and their further applications in detection of multiple biomarkers, including enzymes, reactive oxygen species, reactive sulfur species, and microenvironments. This review aims to guide the design and development of excellent cancer diagnostic fluorescent probes, and promote the broad application of fluorescence analysis in early cancer diagnosis.


Assuntos
Corantes Fluorescentes , Neoplasias , Humanos , Biomarcadores Tumorais , Espécies Reativas de Oxigênio/análise , Fluorescência , Microambiente Tumoral
2.
Anal Chim Acta ; 1297: 342303, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38438223

RESUMO

Nitric oxide (NO) plays critical roles in both physiology and pathology, serving as a significant signaling molecule. Recent investigations have uncovered the pivotal role of lysosome as a critical organelle where intracellular NO exists and takes function. In this study, we developed a novel ratiometric fluorescent probe called XL-NO and modified it with a morpholine unit, which followed the intramolecular charge transfer (ICT) mechanism. The probe could detect lysosomal nitric oxide with high selectivity and sensitivity. The probe XL-NO contained a secondary amine moiety that could readily react with NO in lysosomes, leading to the formation of the N-nitrosation product. The N-nitroso structure enhanced the capability in push-pull electron, which obviously led to the change of fluorescence from 621 nm to 521 nm. In addition, XL-NO was discovered to have some evident advantages, such as significant ratiometric signal (I521/I621) change, strong anti-interference ability, good biocompatibility, and a low detection limit (LOD = 44.3 nM), which were crucial for the detection of lysosomal NO. To evaluate the practical application of XL-NO, NO imaging experiments were performed in both living cells and zebrafish. The results from these experiments confirmed the feasibility and reliability of XL-NO for exogenous/endogenous NO imaging and lysosome targeting.


Assuntos
Corantes Fluorescentes , Óxido Nítrico , Animais , Reprodutibilidade dos Testes , Peixe-Zebra , Lisossomos
3.
ACS Nano ; 17(15): 14347-14405, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486125

RESUMO

Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.


Assuntos
Corantes Fluorescentes , Substâncias Luminescentes , Corantes Fluorescentes/química , Luminescência , Diagnóstico por Imagem , Atenção à Saúde
4.
Chem Asian J ; 18(11): e202300163, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37029596

RESUMO

Developing halogen-functionalized fluorescent dyes with intriguing photophysical properties, including enhanced photostability, is particularly important for bioimaging. In this work, we synthesized two new halogen-functionalized aggregation-induced emission (AIE)-active molecules, DQMF-OH and DQMCl-OH, based on the quinoline-malononitrile chromophore. The halogen effect on the photophysical characteristics was detailedly studied by absorption and fluorescence spectroscopy, density functional theory calculations, and crystal structures. Compared with non-halogen substituted AIE luminogen (AIEgen) DQM-OH, the halogen substituted DQMF-OH and DQMCl-OH exhibited red-shifted absorptions and emissions in the solution and solid state. In addition, DQMF-OH and DQMCl-OH also possessed enhanced fluorescence toward viscosity changes. These AIEgens served as remarkable imaging tools for cell tracking in a wash-free manner. Furthermore, DQMF-OH and DQMCl-OH showed much more excellent photobleaching resistance than DQM-OH. Our work sheds new light on developing fluorescent halogenated dyes with enhanced photophysical performances for biological applications.


Assuntos
Halogenação , Quinolinas , Diagnóstico por Imagem , Corantes Fluorescentes/química , Imagem Óptica/métodos
5.
Org Lett ; 24(45): 8305-8309, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36351250

RESUMO

The effect of acceptor unit order on the photophysical properties of two distinct donor-acceptor-acceptor conjugated fluorescent acrylonitriles, TPA-AN-PhBT and TPA-BT-ANPh, was systematically investigated. Compared with faintly emissive TPA-AN-PhBT in solution, TPA-BT-ANPh showed strong red-shifted fluorescence. TPA-AN-PhBT and TPA-BT-ANPh exhibited enhanced green and deep red emissions with remarkable fluorescence quantum yields up to 44% in the solid state. In addition, TPA-BT-ANPh possessed stronger two-photon absorption than TPA-AN-PhBT. Furthermore, these biocompatible dyes served as excellent fluorescent markers for specific lipid droplet imaging.


Assuntos
Acrilonitrila , Fótons , Espectrometria de Fluorescência , Corantes
6.
J Org Chem ; 87(19): 12741-12748, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36074893

RESUMO

The development of large π-conjugated polycyclic heteroaromatic materials is of immense interest, both in the academic as well as the industrial community. Herein, we present the efficient one-pot synthesis of novel pyreno[2,1-b]furan molecules from a newly designed intermediate, which display intense green emission (505-516 nm) in solution and a large red shift emission (625-640 nm) in the solid state, because of strong π-π stacking. More interestingly, the compounds exhibit novel two-photon absorption (TPA) properties, and the TPA cross-section (δ) value was increased to 533 GM by regulating the electronic effects of the substituents of the pyreno[2,1-b]furan molecules. This study not only offers a facile strategy for constructing new pyrene-fused luminescence materials with two-photon absorption properties but also provides a new chemical intermediate that opens up a new pathway to advanced materials.

7.
Anal Chem ; 94(30): 10676-10684, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35853217

RESUMO

Lipid droplets (LDs) containing cytosolic and nuclear LDs have recently received increasing attention because of their diverse biological roles in living systems. However, developing fluorescent probes for super-resolution visualization of these subcellular LDs still remains challenging due to insufficient fluorescence brightness and poor nuclear membrane permeability. Herein, we rationally synthesized a series of ultrabright solvatochromic fluorescent probes based on benzoboranils (BBAs) for LD-specific super-resolution imaging using structured illumination microscopy (SIM). The rigidly structured probes exhibit ultrahigh fluorescence quantum yields of up to 99.9% in low-polar solvents. They also show more significant fluorescence enhancements in lipid environments than commercial LD probes. Owing to these excellent merits, our lipophilic fluorescent probes can specifically light up subcellular LDs at ultralow concentrations down to 10 nM. Further use of BBA-CF3 for super-resolution SIM imaging of cytosolic and nuclear LDs and their fusion process was successfully achieved. The unprecedented spatial resolution for nuclear LDs with an FWHM value of 142 nm was also acquired. Collectively, our ultrabright fluorescent probes hold tremendous potential to unveil the mysterious roles of cytosolic and nuclear LDs in biological research using SIM.


Assuntos
Corantes Fluorescentes , Gotículas Lipídicas , Permeabilidade da Membrana Celular , Citosol , Corantes Fluorescentes/química , Gotículas Lipídicas/química , Microscopia de Fluorescência/métodos
8.
Chem Sci ; 13(10): 2965-2970, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35382465

RESUMO

Tracking mitochondrial movement in neurons is an attractive but challenging research field as dysregulation of mitochondrial motion is associated with multiple neurological diseases. To realize accurate and long-term tracking of mitochondria in neurons, we elaborately designed a novel aggregation-induced emission (AIE)-active luminogen, TPAP-C5-yne, where we selected a cationic pyridinium moiety to target mitochondria and employed an activated alkyne terminus to achieve long-term tracking through bioconjugation with amines on mitochondria. For the first time, we successfully achieved the accurate analysis of the motion of a single mitochondrion in live primary hippocampal neurons and the long-term tracking of mitochondria for up to a week in live neurons. Therefore, this new AIEgen can be used as a potential tool to study the transport of mitochondria in live neurons.

9.
Anal Chem ; 94(9): 3881-3887, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35192331

RESUMO

The prominent pathological feature of fatty liver disease lesions is excessive fat accumulation in lipid droplets in hepatocytes. Thus, developing fluorescent lipid droplet-specific probes with high permeability and a high imaging contrast provides a robust tool for diagnosing fatty liver diseases. Herein, we rationally developed a novel donor-acceptor lipophilic fluorescent probe ANI with high photostability for wash-free visualization of lipid droplets and fatty liver disease characteristics. ANI showed a typical twisted intramolecular charge transfer effect with very faint fluorescence in high-polar solvents, but dramatically boosted emissions in low-polar environments. The solvatochromic probe can selectively light up lipid droplets with a high contrast in a wash-free manner. Further use of ANI to reveal the excessive accumulation of lipid droplets with a significantly large size in the liver tissues from the fatty liver disease model mice was successfully demonstrated. The remarkable imaging performances rendered ANI an alternative tool for accurately evaluating fatty liver disease in intraoperative diagnosis.


Assuntos
Fígado Gorduroso , Gotículas Lipídicas , Animais , Fígado Gorduroso/diagnóstico por imagem , Corantes Fluorescentes , Camundongos , Microscopia de Fluorescência
10.
ACS Appl Mater Interfaces ; 13(45): 53610-53617, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34730323

RESUMO

Photothermal therapy (PTT) has inherent advantages in the treatment of hypoxic tumors due to its optically controlled selectivity on tumor ablation and oxygen-independent nature. The subcellular organelle-targeting capability and photothermal conversion efficiency (PCE) at near-infrared (NIR) wavelength are the key parameters in the assessment of the photothermal agent (PTA). Here, we report that carbon dots (CDs) prepared by the hydrothermal treatment of coronene derivatives show a high PCE of 54.7% at 808 nm, which can be attributed to the narrow band gap and the presence of amounts of continuous energy bands on CDs. Moreover, the vibrations in the layered graphite structures of the CDs also increase the rate of nonradiative transition and thus enhance the PCE. Furthermore, the CDs also possess excellent photostability, biocompatibility, and cell penetration capability and could mainly accumulate in the lysosomes. These experiment results have proved that the CDs are suitable as an efficient NIR light-triggered PTA for efficient PTT against cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Carbono/química , Fármacos Fotossensibilizantes/farmacologia , Compostos Policíclicos/farmacologia , Pontos Quânticos/química , Animais , Antineoplásicos/química , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Raios Infravermelhos , Lisossomos/química , Camundongos , Estrutura Molecular , Imagem Óptica , Fármacos Fotossensibilizantes/química , Terapia Fototérmica , Compostos Policíclicos/química
11.
Anal Chem ; 93(34): 11729-11735, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34229431

RESUMO

Lipid droplets (LDs) and lysosomes are crucial for maintaining intracellular homeostasis. But single fluorescent probes (SFPs) capable of simultaneous and discriminative visualizing of two organelles above and their interaction in living cells are still challenging due to the lack of rational design strategies. To break this bottleneck, herein, we develop a reliable strategy based on a pH-sensitive intramolecular spirocyclization. As a proof of concept, an SFP CMHCH, which possesses a switchable hemicyanine/spiro-oxazine moiety induced by pH, has been designed and synthesized. In acidic environments, the ring-open form CMHCH exhibits red-shift emission and low logP value, whereas the ring-closed form CMHC displays blue-shift emission and high logP value in neutral or basic environments. Thus, the distinct different hydrophilicity/hydrophobicity and absorption/emission properties of these two forms enable targeting LDs and lysosomes simultaneously and discriminatingly. Very importantly, the dynamic process of lipophagy can be directly monitored with CMHCH. The success of CMHCH indicated that the spirocyclization strategy is efficient for constructing SFPs to LDs and lysosomes.


Assuntos
Corantes Fluorescentes , Gotículas Lipídicas , Autofagia , Concentração de Íons de Hidrogênio , Lisossomos
12.
Anal Chem ; 93(26): 9074-9082, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34132525

RESUMO

Visualizing cholesterol (CL) fluctuation in plasma membranes is a crucially important yet challenging task in cell biology. Here, we proposed a new imaging strategy based on permeability changes of plasma membranes triggered by different CL contents to result in controllable spatial distribution of single fluorescent probes (SF-probes) in subcellular organelles. Three spatial distribution-controllable SF-probes (PMM-Me, PMM-Et, and PMM-Bu) for imaging CL fluctuation in plasma membranes were rationally developed. These SF-probes target plasma membranes and mitochondria at normal CL levels, while they display solely staining in plasma membranes and mitochondria at increased and decreased CL levels, respectively. These polarity-sensitive probes also show distinct emission colors with fluorescence peaks of 575 and 620 nm in plasma membranes and mitochondria, respectively. Thus, the CL fluctuation in plasma membranes can be clearly visualized by means of the spatially distributed and two-color emissive SF-probes.


Assuntos
Corantes Fluorescentes , Organelas , Membrana Celular , Colesterol , Mitocôndrias
13.
ACS Sens ; 6(4): 1552-1559, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33533249

RESUMO

Subcellular organelles play indispensable roles in diverse biological processes by their precise mutual cooperation. Thus, the development of a single fluorescent probe (SF-probe) for simultaneous and discriminable visualization of different organelles and their dynamics during certain bioprocess is significant, yet remains greatly challenging. Herein, for the first time, we rationally prepared a pH-sensitive SF-probe (named HMBI) for the simultaneous two-color visualization of nuclei and mitochondria and monitoring cell apoptosis. HMBI shows remarkable ratiometric fluorescence changes toward pH changes. Due to different pH environments in subcellular organelles, HMBI can image nuclei and mitochondria with green and red emission, respectively. HMBI can monitor drug-induced cell apoptosis with dramatically decreased red emission in mitochondria but almost unchanged green emission in nuclei, and the shrinking and pyknotic nuclei are also observed during cell apoptosis. HMBI possesses tremendous potential in two-color biomedical imaging of the dynamic changes of nuclei and mitochondria in many physiological processes.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Apoptose , Humanos , Concentração de Íons de Hidrogênio , Microscopia de Fluorescência
14.
J Am Chem Soc ; 143(8): 3169-3179, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33570390

RESUMO

In living systems, subcellular organelles mutually cooperate and closely contact to form organelle interaction networks. Thus, the simultaneous and discriminative visualization of different organelles is extremely valuable for elucidating their distribution and interplay. However, such meaningful investigations remain a great challenge due to the lack of advanced single fluorescent probes (SF-probes) capable of simultaneous and two-color imaging of two targets. Herein, for the first time, we present two excited-state intramolecular proton transfer (ESIPT) based SF-probes (PPC and EPC) for simultaneous two-color fluorescence imaging of lipid droplets (LDs) and the endoplasmic reticulum (ER) under single-wavelength excitation. Due to the strong electron-donating ability of the side substituents, the fluorescence spectra and colors of these ESIPT probes are highly sensitive to the nuance of water contents between LDs and ER, leading to orange and green fluorescence in LDs and ER, respectively, in the Lambda imaging mode. Using the probe PPC or EPC, the morphology, size, and distribution of LDs and ER have been investigated in live cells and tissues. With the aid of in situ and real-time fluorescence imaging in Lambda mode, we observed the generation of newborn LDs near the ER regions and their close apposition and shared identical fluorescence colors, probably providing a valuable proof for the mainstream hypothesis that LDs originate from the ER. The remarkable imaging performances render these SF-probes as powerful tools to decipher LD-ER related biological processes.


Assuntos
Retículo Endoplasmático/metabolismo , Corantes Fluorescentes/metabolismo , Gotículas Lipídicas/metabolismo , Imagem Óptica/métodos , Linhagem Celular , Cor , Humanos
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 249: 119338, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360060

RESUMO

Nuclear to cytoplasmic ratio is one of the vital parameters in diagnosis of cancer by means of hematoxylin-eosin (HE) stained histopathology. However, HE histopathology dependent on mechanical tissue slice damages biosamples and exhibits insufficient accuracy. Herein, we rationally prepared two small-molecule plasma membrane fluorescent probes with red-emitting fluorescence for visualizing plasma membrane in living cells and tissues. Their fluorescence intensities are strongly affected by environmental viscosity, which enables the exclusive imaging of plasma membrane in high fidelity. The probes can visualize plasma membrane in SiHa and rat blood red cells. Particularly, the probes are able to visualize T-tubule (transverse tubule) in skeletal muscle tissues successfully, suggesting their ability to image plasma membrane in tissues. In cooperation with Hoechst 33342, the nuclear to cytoplasmic ratio was successfully qualified in live cells and tissues. We believe these probes may have potential applications in facilitating the study on histopathology and the related areas.


Assuntos
Corantes Fluorescentes , Animais , Membrana Celular , Citoplasma , Amarelo de Eosina-(YS) , Microscopia de Fluorescência , Ratos
16.
Front Chem ; 8: 617463, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381495

RESUMO

Fluorescence imaging has been widely used as a powerful tool for in situ and real-time visualization of important analytes and biological events in live samples with remarkably high selectivity, sensitivity, and spatial resolution. Compared with one-photon fluorescence imaging, two-photon fluorescence imaging exhibits predominant advantages of minimal photodamage to samples, deep tissue penetration, and outstanding resolution. Recently, the aggregation-induced emission (AIE) materials have become a preferred choice in two-photon fluorescence biological imaging because of its unique bright fluorescence in solid and aggregate states and strong resistance to photobleaching. In this review, we will exclusively summarize the applications of AIE-active materials in two-photon fluorescence imaging with some representative examples from four aspects: fluorescence detection, in vitro cell imaging, ex vivo tissue imaging, and in vivo vascular imaging. In addition, the current challenges and future development directions of AIE-active materials for two-photon bioimaging are briefly discussed.

17.
ACS Appl Mater Interfaces ; 12(46): 51293-51301, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33156606

RESUMO

Organic thermally activated delayed fluorescence (TADF) materials are emerging as potential candidates for time-resolved fluorescence imaging in biological systems. However, the development of purely organic TADF materials with bright aggregated-state emissions in the red/near-infrared (NIR) region remains challenging. Here, we report three donor-acceptor-type TADF molecules as promising candidates for time-resolved fluorescence imaging, which are engineered by direct connection of electron-donating moieties (phenoxazine or phenothiazine) and an electron-acceptor 1,8-naphthalimide (NI). Theoretically and experimentally, we elucidate that three TADF materials possessed remarkably small ΔEST to promote the occurrence of reverse intersystem crossing (RISC). Moreover, they all exhibit aggregation-induced red emissions and long delayed fluorescence lifetimes without the influence of molecular oxygen. More importantly, these long-lived and biocompatible TADF materials, especially the phenoxazine-substituted NI fluorophores, show great potential for high-contrast fluorescence lifetime imaging in living cells. This study provides further a molecular design strategy for purely organic TADF materials and expands the versatile biological application of long-lived fluorescence research in time-resolved luminescence imaging.


Assuntos
Materiais Biocompatíveis/química , Corantes Fluorescentes/química , Naftalimidas/química , Oxazinas/química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Microscopia de Fluorescência , Teoria Quântica , Espectrometria de Fluorescência , Temperatura
18.
ACS Nano ; 14(12): 16840-16853, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33197171

RESUMO

Photodynamic therapy (PDT), a noninvasive therapeutic strategy for cancer treatment, which always suffers from the low reactive oxygen species (ROS) yield of traditional organic dyes. Herein, we present lipid-encapsulated aggregation-induced emission nanoparticles (AIE NPs) that have a high quantum yield (23%) and a maximum two-photon absorption (TPA) cross-section of 560 GM irradiated by near-infrared light (800 nm). The AIE NPs can serve as imaging agents for spatiotemporal imaging of tumor tissues with a penetration depth up to 505 µm on mice melanoma model. Importantly, the AIE NPs can simultaneously generate singlet oxygen (1O2) and highly toxic hydroxyl radicals (•OH) upon irradiation with 800 nm irradiation for photodynamic tumor ablation. In addition, the AIE NPs can be effectively cleared from the mouse body after the imaging and therapy. This study provides a strategy to develop theranostic agents for cancer image-guided PDT with high brightness, superior photostability, and high biosafety.

19.
Chem Sci ; 11(22): 5753-5758, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32832051

RESUMO

In clinical chemotherapy, some basic drugs cannot enter the hydrophobic cell membrane because of ionization in the acidic tumor microenvironment, a phenomenon known as ion trapping. In this study, we developed a method to visualize this ion trapping phenomenon by utilizing a pH-responsive ratiometric AIEgen, dihydro berberine (dhBBR). By observing the intracellular fluorescence of dhBBR, we found that non-ionized dhBBR can enter cells more easily than ionized forms, which is in accordance with the concept of ion trapping. In addition, dhBBR shows superior anti-photobleaching ability to Curcumin thanks to its AIE properties. These results suggest that dhBBR can serve as a bioprobe for ion trapping.

20.
Biomaterials ; 242: 119924, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32145509

RESUMO

Fully understanding the complicated interplays among various chemical species and organelles is greatly important to unravel the mystery of life. However, fluorescent probes capable of visualizing multiple targets discriminatively are severely deficient, which extremely limit the investigation on intracellular interplays among various species. Towards this end and in consideration of the unique advantages of aggregation-induced emission luminogens (AIEgens), here we rationally designed and presented a single AIEgen, named TVQE, bearing lipophilic, cationic and hydrolyzable moieties, and this AIEgen was capable of illuminating mitochondria and lipid droplets with red and blue emission, respectively. In addition, TVQE was successfully used for evaluating cell viability due to its distinct two-color emission changes tuned by esterase-mediated hydrolysis. Of particular importance is that TVQE can selectively differentiate live, early apoptotic, late apoptotic, and dead cells by confocal microscopy and quantify cell viability statistically by flow cytometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...